

CL #05-1571 1

GeoFEST 4.5(G)
Addendum to Design and
User Documentation

This document describes the functional and structural changes incorporated into the special
version 4.5(G) release of GeoFEST. This version of the program was developed in order to
demonstrate and study the use of solution-driven adaptive mesh refinement (using Pyramid) in
large viscoelastic finite element problems. This version was used in March 2005 to study
performance of a 16 million element mesh distributed over a cluster of 490 Intel Pentium
processors. In addition to allowing interested users to duplicate and extend this work, posting of
the source code for this version may provide a helpful starting point for researchers interested in
development of similar but different mesh-modifying versions.

As was the case for the standard 4.5 release version, the code is targeted at hardware
configurations of MPI-based parallel UNIX cluster computers. (Unlike the standard release
however, this special purpose version does not offer the option of compiling for sequential
computers; this release is for parallel use only.) Users should note that this code requires the
latest version of Pyramid to properly compile and run (more recent than version 1.1.5).

The following summarizes changes in the execution flow and subroutine structure incorporated
in this version:

The “main.c” module contains the top-level execution flow of the program. In the standard
release, this consists of the “input_phase”, “elastic” and “time_step” tasks. In the current release,
between the “elastic” and “time_step” tasks is inserted an automatic mesh refinement phase.
This takes the form of the new tasks “save_attributes”, “get_refine” and “update_phase”. This
mesh refinement step is followed by a repeat call to “elastic” which recomputes the elastic
solution on the new mesh, after it has been refined based on the initial elastic solution. The
subsequent viscoelastic solution proceeds as usual, through the “time_step” task on the updated
mesh.

To support adaptive mesh refinement (AMR) for GeoFEST modifications were made to the files
finel.h, main.c, and solver.c to support this feature for the elastic time step phase. The
following represents changes to the listed files:

finel.h:

#define REFINE_THRESHOLD 1.99e-2
Strain energy threshold above which elements will be marked
for refinement.

CL #05-1571 2

main.c:

Mesh Declaration
An additional mesh variable was added to support both the
initial mesh and the adaptively refined mesh as represented in
the main program declaration section by:

pamr_Mesh[2];

Allocation of Storage for Mesh Components
As node and element data must be stored for interpolation
from the coarse mesh to the refined mesh, under load
balancing and adaptiive refinement, allocation for these
variables has been assigned for both these meshes by the
commands:

pamr_define_mesh_terms(&m[0], ...);
pamr_define_mesh_terms(&m[1], ...);

Adaptive Refinement for Elastic Time Step
Performing adaptive refinement requires that the coarse mesh
node and element values (the current "solution") be saved for
interpolation to the refined mesh. During the AMR stage a
strain energy metric is applied where elements with values
above a fixed threshold (defined by REFINE_THRESHOLD in
finel.h) are marked for refinement. Subsequently, these coarse
mesh elements are migrated in a load balanced way to new
processors follwed by the creation of new elements that
represent the adaptive mesh. Now that two meshes exist, the
coarse and the refined mesh, interpolation and definition of
the AMR mesh can occur during an update phase to properly
represent all aspects of the new mesh after refinement. These
events occur during the following operations:

elastic(&m[0]) ;
save_attributes(&m[0]) ;
get_refine(&m[0], &m[1]) ;
update_phase(&m[0], &m[1]) ;
elastic(&m[1]) ;

Incidently, once the update_phase() is completed the original
coarse mesh is no longer needed so that storage is released.

solver.c:

Communication Buffers in Globalize
The solver works in parallel where shared node data must be

CL #05-1571 3

updated properly. Since numerous iterations are performed
per time step on the mesh the routine "globalize()" only
performs an initial local storage allocation reusing that
memory over successive time steps. Since the mesh can now
change due to AMR these coarse mesh buffers must be
released and refined mesh buffers created and reused over
successive time steps. Globalize now contains an additional
variable that controls how these buffers are managed. These
changes are integrated in the calls to globalize in the code, so
no modifications are needed by the user.

The refinement is based on the strain energy of the elastic solution, or alternatively the formal
elastic strain energy computed from the change in stress and strain from a single time step. This
strategy is based on the insight that an optimal mesh for an elastic solution would have equal
strain energy in every element in the mesh. We approximate this ideal by finding the elements
with the most strain energy, and marking them for refinement. The resulting elements will each
have lower strain energy than the original mesh, and so approach the ideal of strain energy
equalization.

This strain energy is computed by a modification to the routine form_stress. Strain energy is a
quadratic form involving all the components of strain with the constitutive material tensor. We
compute this by taking a dot-product of the stress with the strain. For time-stepping solutions,
this is taken to be the single-step change in stress and strain, which is consistent with the view
that a single step of the viscoelastic solution is analogous to an elastic solution with a modified
right-hand side (loading).

New routines have been added to support the solution-based mesh refinement:

Routine save_attributes:
Saves GeoFEST problem description values as PYRAMID attributes.
This routine packages the parts of the GeoFEST mesh (BC's, split
node definitions, material properties) into PYRAMID floating-
point based records for propagation into the newly created mesh.

Routine get_refine:
Performs adaptive mesh refinement based on strain energy.
This routine marks elements for refinement based on the delta
strain energy of the most recent solution (displacements,
strains). Currently it uses a hard-wired threshold
(REFINE_THRESHOLD) which was designed to produce a 16-million
element mesh from the original 10-million element mesh used in
this case. The refined mesh is produced by invoking the pyramid
routine pamr_physical_amr. Further processing is required to
translate this refined mesh into active GeoFEST data structures
(in update_phase).

CL #05-1571 4

Routine update_phase:
Retrieves attributes from PYRAMID refined mesh, and from that
basis creates new GeoFEST internal mesh structures (nodes,
elements, boundary conditions, split nodes, and material
properties). Essentially every aspect of the mesh has changed
since input_phase read in the file-based mesh, so we need to
refill all those data structures with valid data.

